New Modules Are Added to Vibrissal Premotor Circuitry with the Emergence of Exploratory Whisking
نویسندگان
چکیده
Rodents begin to use bilaterally coordinated, rhythmic sweeping of their vibrissae ("whisking") for environmental exploration around 2 weeks after birth. Whether (and how) the vibrissal control circuitry changes after birth is unknown, and the relevant premotor circuitry remains poorly characterized. Using a modified rabies virus transsynaptic tracing strategy, we labeled neurons synapsing directly onto vibrissa facial motor neurons (vFMNs). Sources of potential excitatory, inhibitory, and modulatory vFMN premotor neurons, and differences between the premotor circuitry for vFMNs innervating intrinsic versus extrinsic vibrissal muscles were systematically characterized. The emergence of whisking is accompanied by the addition of new sets of bilateral excitatory inputs to vFMNs from neurons in the lateral paragigantocellularis (LPGi). Furthermore, descending axons from the motor cortex directly innervate LPGi premotor neurons. Thus, neural modules that are well suited to facilitate the bilateral coordination and cortical control of whisking are added to the premotor circuitry in parallel with the emergence of this exploratory behavior.
منابع مشابه
The Brainstem Oscillator for Whisking and the Case for Breathing as the Master Clock for Orofacial Motor Actions.
Whisking and sniffing are predominant aspects of exploratory behavior in rodents. We review evidence that these motor rhythms are coordinated by the respiratory patterning circuitry in the ventral medulla. A recently described region in the intermediate reticular zone of the medulla functions as an autonomous whisking oscillator, whose neuronal output is reset upon each breath by input from the...
متن کاملModeling forces and moments at the base of a rat vibrissa during noncontact whisking and whisking against an object.
During exploratory behavior, rats brush and tap their whiskers against objects, and the mechanical signals so generated constitute the primary sensory variables upon which these animals base their vibrissotactile perception of the world. To date, however, we lack a general dynamic model of the vibrissa that includes the effects of inertia, damping, and collisions. We simulated vibrissal dynamic...
متن کاملThe search space of the rat during whisking behavior.
Rodents move their vibrissae rhythmically to tactually explore their surroundings. We used a three-dimensional model of the vibrissal array to quantify the rat's 'search space' during whisking. Search space was quantified either as the volume encompassed by the array or as the surface formed by the vibrissal tips. At rest, the average position of the vibrissal tips lies near the rat's mouth, an...
متن کاملThe Central Pattern Generator for Rhythmic Whisking
Whisking and sniffing are predominant aspects of exploratory behavior in rodents. We review evidence that these motor rhythms are coordinated by the respiratory patterning circuitry in the ventral medulla. A region in the intermediate reticular zone, dorsomedial to the preBötzinger inspiratory complex, provides rhythmic input to the facial motoneurons that drive protraction of the vibrissae. Ne...
متن کاملA night in the life of a rat: vibrissal mechanics and tactile exploration.
The rat vibrissal (whisker) system is an increasingly important model for the study of the sense of touch. This paper describes recent results obtained from high-speed videography of rat exploratory behavior and from modeling studies of vibrissal biomechanics. We review several features of vibrissal touch, including the mechanics of contact versus noncontact whisking, the coordination between h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 77 شماره
صفحات -
تاریخ انتشار 2013